<aside> 💡 If not able to view properly: Try this link: https://www.notion.so/kalyandath18/Week-3-047baf2997314d9c8451bad234ea0adf

</aside>

Properties of Addition and Scalar Multiplication

Let $v,w,v^{'}$ be vectors in $\R^n$ and $a,b \in \R$.Then:

  1. $v+w=w+v$
  2. $(v+w)+v^{'} =v+(w+v^{'})$
  3. The $0$ vector satisfies that $v+0=0+v=v.$
  4. The vector $-v$ satisfies that $v+(-v)=0$.
  5. $1v=v$
  6. $(ab)v=a(bv)$
  7. $a(v+w)=av+aw$
  8. $(a+b)v=av+bv$

Definition of a Vector Space

<aside> 💡 A vector space is a set with two operations (called addition and scalar multiplication with the above properties 1-8.

</aside>

<aside> 💡 A vector space $V$ over $\R$ is a set along with two functions: $+$$:V\times V \rightarrow V$ and $.~$$:\R \times V \rightarrow V$

</aside>

i.e., for each pair of elements $v_1$ and $v_2$ in $V$, there is a unique element $v_1+v_2$ in $V$, and for each $c \in \R$ and $v\in V$ there is a unique element $c.v$ in $V.$

<aside> 💡 The functions $+$ and $.$ are required to satisfy rules 1-8 of addition and scalar multiplication.

</aside>

Properties( Same as above )

<aside> 💡

For $V$ to be a vector space, the following conditions should hold:

</aside>