The Inverse of a Square Matrix

<aside> 💡 Let $A$ be a $n\times n$ matrix. The inverse of $A$ is another $n\times n$ matrix $B$ such that $AB=BA=I_{n\times n}$ and is denoted by $A^{-1}$.

</aside>

Uniqueness of Inverse

Inverse of $A$ exists $\implies$$det(A)$ has to be non-zero. (since $det(A^{-1})=\frac 1 {det(A)}$) The converse is also true.


The Adjugate of a Square Matrix

<aside> 💡 The adjugate matrix of $A$ is defined as: $adj(A)=C^T$, where $C$ is the cofactor matrix whose $(i,j)^{th}$ entry is $C_{ij}$.

</aside>


Adjugate and Inverse

If $A$ is an $n\times n$ matrix and $det(A)\neq0$, then $A^{-1}$ exists and:

<aside> 💡 $A^{-1} = \frac 1 {det(A)} ~adj(A)$

</aside>