Orthogonal Transformations

Let $V$ be an inner product space and $T$ be a linear transformation from $V$ to $V$.

<aside> 💡 $T$ is said to be orthogonal transformation if $\langle Tv,Tw \rangle = \langle v, w \rangle$ for all $v,w \in V$.

</aside>

When $V=\R^n$ with the usual inner product, a linear transformation $T: \R^n \to \R^n$ is orthogonal if it preserves angles and lengths.


Finding the Rotation matrix in $\R^2$

Untitled

Untitled


Rotations in $\R^3$

Untitled

Untitled