Inner product of a Vector Space

An inner product on a vector space $V$ is a function $\langle.,.\rangle:V\times V\rightarrow \R$ satisfying the following:

<aside> 💡 A vector space $V$ together with an inner product $\langle.,.\rangle$ is called an inner product space.

</aside>


The Dot product is an example of Inner Product

Untitled


Norm on a Vector Space

<aside> 💡 A norm on a vector space $V$ is a function $||.||: V \rightarrow \R$ $x \rightarrow ||x||$ satisfying the following conditions:

  1. $||x+y|| \leq ||x|| + ||y||~, ~\forall x,y \in V$
  2. $||cx||= ~|c|||x||,\forall~c \in \R$and for all $x\in V$
  3. $||x||\geq0~~\forall x\in V ;||x||=0$ if and only if $x=0$

</aside>


Length as an example of a Norm

Untitled


The Inner Product induces a Norm

Untitled