Consider the following system of linear equations of two variables:
$a_{11}x_1+a_{12}x_2=b_1$
$a_{21}x_1+a_{22}x_2=b_2$
Matrix Representation : $AX=b$ ; $A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, $b=\begin{bmatrix} b_1\\b_2\end{bmatrix}$ . (Assuming $A$ is invertible).
Define $A_{x_1}= \begin{bmatrix} b_1 & a_{12} \\ b_2 & a_{22}\end{bmatrix}$$, A_{x_2} = \begin{bmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{bmatrix}$
Then the solution of the system of equations in 2 variables is:
$x_1 =\frac {det(A_{x_1})} {det(A)}$
$x_2=\frac {det(A_{x_2})} {det(A)}$
Consider the following system of linear equations in 3 variables:
$a_{11}x_1+a_{12}x_2+a_{13}x_3=b_1$
$a_{21}x_1+a_{22}x_2+a_{23}x_3=b_2$
$a_{31}x_1+a_{32}x_2+a_{33}x_3=b_3$
The solution of the system of equations of 3 variables:
$\large x_1=\frac {det(A_{x_1})} {det(A)}$ ; $\large x_2=\frac {det(A_{x_2})} {det(A)}$ ; $\large x_3=\frac {det(A_{x_3})} {det(A)}$
The unique solution of system of linear equations with n variables:
$x_i=\frac {det(A_{x_i})} {det(A)}$